
The TLabel Enabled Property
In all the control components in the VCL, setting the
Enabled property will dim the control by setting it to a
grey colour. This is a signal to the user that the control
cannot be selected. In most cases Windows itself
handles the disabling and greying of the control
through the EnableWindow API.

However, looking at the VCL reveals that TLabel
doesn’t descend from the TWinControl class but rather
from the TGraphicControl class. This means that draw-
ing of the control must be handled by the VCL itself.
When the Enabled property of a TLabel control is set to
false, the VCL uses a hard-coded colour of clGrayText
when drawing the label.

This works fine for a white background, but with
default grey forms and panels, the labels simply disap-
pear when Enabled is set false. Most of the time, this is
not want you want. To hide a label, you set the Visible
property to false. Setting Enabled to false should just
dim it, not make it invisible!

The simple solution to this problem is to set the
colour to a known grey colour that is slightly different
from the background colour, instead of setting the
Enabled property. For instance:

procedure TTestDialog.UpdateDialog(
 Value: boolean);
begin
 NameEdit.Enabled := Value;
 { This is a workaround for the
 Enabled:=false bug for TLabel }
 if Value then
 NameLabel.Font.Color := clBlack
 else
 NameLabel.Font.Color := clGray;
end;

When you have a lot of labels this can become quite
tiresome. So, I created my own component, called
TFixedLabel, which solves this problem by re-
implementing the Enabled property. The code for the
TFixedLabel component is shown in Listing 1.

The component works by setting the colour of the
font to a grey colour that differs from the background
colour (the colour of the parent) when it is disabled.
The original font colour is saved in a private field. The
font colour is restored when the component is enabled
again.

First we declare a new published property with the
same name as the Enabled property in the TLabel

Tips
& Tricks

component. This will ensure that only the new
property will appear in the Object Inspector.

The original Enabled property is always set to true.
This ensures that the VCL code will always use the set
colour of the font rather than the hardcoded clGrayText
colour.

With this done, we also need to override the Font
property to save any new colours assigned to the font.
Because the TLabel.Enabled property will always be
true, we also have to override the handling of the
CM_DialogChar message and only perform the default
behaviour when our own Enabled property is true.

Finally, I added the abilty to enable and disable the
component associated with the label through the
FocusControl property. The FocusEnable property turns
this ability on and off. If FocusEnable is true, the associ-
ated control will be enabled and disabled in parallel
with the label itself.

Now our previous code can be simplified like this:

procedure TTestDialog.UpdateDialog(
 Value: boolean);
begin
 NameLabel.Enabled := Value;
end;

This assumes that the FocusEnable property is true (the
default) and the FocusControl property is set to
NameEdit.

Note that overriding properties this way is a static,
compile-time override rather than a run-time polymor-
phic override. This is because property resolution is
done at compile-time rather than at run-time.

If the property access methods (GetEnabled and
SetEnabled) had been implemented as non-private
virtual methods, we would have been able to override
them in a true object oriented sense. Unfortunately,
Borland have implemented all property access
methods as static and private, making it impossible to
override them.

More than just fixing an innocent bug, this code
shows how you can override existing properties. Just
remember that this method is not polymorphic, that is,
existing VCL code will keep accessing the old property,
but in all the code you write (and through the Object
Inspector) you can access the new overridden prop-
erty.

Contributed by Hallvard Vassbotn (internet email:
hallvard@falcon.no)

Event Chains In Delphi
One of the new language features in Delphi are event
handlers. By default, on double clicking an event in the
Object Inspector Delphi writes an empty event handler
and assigns it to the event. Then it’s your turn to fill in
the code that should run when that event occurs. In
most cases this is all you need, but in some places it
would be nice to assign the same event-handler to a
number of different components so that they all act in

60 The Delphi Magazine Issue 7

the same manner, but without losing the individuality
of single components.

For example, in a form you have a control which
should act in some way if the user presses the F4 key,
but you also want the same control to act on an F5
keypress and you’d like to share the code for this with
other controls and make it totally independent from
the F4 keypress event handler. What do you do? I
discovered two different techniques to cope with this
situation.

One technique would be to make the event handler
virtual and call the previous handler using the
inherited keyword. This could be problematic because
you must define the event handler as virtual when you
create it. Also, you must always call the inherited
handler (which I often forget if I am writing code
quickly!). Finally, it is not really independent of the
form, so I threw this idea away!

Another method is to save the assigned event
handler and re-assign a new one. I call this technique
Event Chaining. In Turbo Pascal since version 4.0 there
was a way to add your own procedure into a program’s
exit handler using a procedure pointer called ExitProc
(In Delphi’s ObjectPascal the same task is achieved
more easily by AddExitProc). The technique is:
➣ Save the last value of ExitProc into a variable named

SavExitProc;
➣ Re-assign ExitProc to your own exit handler;
➣ If the handler is called restore ExitProc to the value

of SavExitProc, so that after processing your code
the system calls the next handler in the chain.

I find this technique very good and after thinking for
some minutes I realised I wanted something just like
this for event handlers. So far it works very well!

I’ve included a small example (on the disk with this
issue) that demonstrates how to chain two key event
handlers (one assigned directly using the Object
Inspector, the second defined in code) for one control.

unit FLabel;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
 Graphics, Controls, Forms, Dialogs, StdCtrls;
type
 TFixedLabel = class(TLabel)
 private
 { Private declarations }
 FEnabled: boolean;
 FFocusEnable: boolean;
 FOrigColor: TColor;
 procedure UpdateFocusedEnabled;
 procedure SetEnabled(Value: boolean);
 function GetFont: TFont;
 procedure SetFont(Value: TFont);
 function IsFontStored: boolean;
 procedure SetFocusEnable(Value: boolean);
 procedure CMDialogChar(var Message: TCMDialogChar);
 message CM_DIALOGCHAR;
 protected
 { Protected declarations }
 public
 { Public declarations }
 constructor Create(AOwner: TComponent); override;
 published
 { Published declarations }
 property Enabled: boolean read FEnabled write
SetEnabled default True;
 property Font: TFont read GetFont
 write SetFont stored IsFontStored;
 property FocusEnable: boolean read FFocusEnable
 write SetFocusEnable default True;
 end;
procedure Register;

implementation
type
 TPublicWinControl = class(TWinControl)
 public
 property Color;
 end;

constructor TFixedLabel.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 FEnabled := true;
 FOrigColor := Font.Color;
 FFocusEnable := true;
 { This is the default, just to make sure... }
 inherited Enabled := true;
end;

procedure TFixedLabel.SetEnabled(Value: boolean);
var LabelColor : TColor;
begin
 if Value <> FEnabled then begin

 inherited Enabled := true;
 FEnabled := Value;
 if FEnabled then
 LabelColor := FOrigColor
 else begin
 FOrigColor := inherited Font.Color;
 LabelColor := clBtnFace;
 end;
 if (Parent <> nil) and
 (TPublicWinControl(Parent).Color = LabelColor)
 then LabelColor := clGray;
 inherited Font.Color := LabelColor;
 UpdateFocusedEnabled;
 end;
end;

function TFixedLabel.GetFont: TFont;
begin
 Result := inherited Font;
end;

procedure TFixedLabel.SetFont(Value: TFont);
begin
 inherited Font := Value;
 FOrigColor := inherited Font.Color;
end;

function TFixedLabel.IsFontStored: boolean;
begin
 Result := not ParentFont;
end;

procedure TFixedLabel.UpdateFocusedEnabled;
begin
 if FFocusEnable and (FocusControl <> nil) then
 FocusControl.Enabled := Enabled;
end;

procedure TFixedLabel.SetFocusEnable(Value: boolean);
begin
 if FFocusEnable <> Value then begin
 FFocusEnable := Value;
 UpdateFocusedEnabled;
 end;
end;

procedure TFixedLabel.CMDialogChar(
 var Message: TCMDialogChar);
begin
 if Enabled then
 inherited;
end;

procedure Register;
begin
 RegisterComponents(’BugFixes’, [TFixedLabel]);
end;

end.

➤ Listing 1

March 1996 The Delphi Magazine 61

➤ Figure 1

Figure 1 shows the example program running. There
are several steps.

At the time of form creation I save the current event
handler of the BitBtn control into a private declared
variable called FOldOnKeyDown. Then I re-assign the
event-handler to my own one with one simple line. After
this, each time the event OnKeyDown occurs, first of all
the method OverallKeyDown is called:

procedure TForm1.FormCreate(Sender: TObject);
begin
 { Save current event handler }
 FOldOnKeyDown := BitBtn1.OnKeyDown;
 { Assign new event handler }
 BitBtn1.OnKeyDown := OverallKeyDown;
end;

Once the event handler is called you can process your
own code. Then you should call the previous handler
if it is assigned:

procedure TForm1.OverAllKeyDown(Sender: TObject;
 var Key: Word; Shift: TShiftState);
begin
 {... your code should be inserted here ...}
 { Call next event-handler in the chain }
 if Assigned(FOldOnKeyDown) then
 FOldOnKeyDown(Sender,Key,Shift);
end;

A look at the previous handler shows that it is totally
independent of the rest of the program, it does not
know that it is called at the end of the chain:

procedure TForm1.BitBtn1KeyDown(Sender: TObject;
 var Key: Word; Shift: TShiftState);
begin
 if Key = vk_F4 then begin
 MessageDlg(’F4 is pressed on BitBtn1 ’,
 mtInformation, [mbOk], 0);
 Key := 0;
 end;
end;

After everything is done the event handler should be
restored to its correct value. In this case it is not
necessary, because after the form is destroyed the
event handler doesn’t play a role any longer, but to
demonstrate how it is done:

procedure TForm1.FormDestroy(Sender: TObject);
begin
 { Restore previous event handler for BitBtn1 }
 BitBtn1.OnKeyDown := FOldOnKeyDown;
end;

The example program shows two BitBtn controls in a
form, but only the first acts on F4 and F5 key presses.
F4 is handled by the standard event handler and F5 is
handled by the other event handler. In the example I
only use one handler to chain to the old one, but it is

also possible to use this technique over a several
handlers. It would interesting to manage the list of
previous handlers into a TList class descendant in the
same way as AddExitProc acts [Any takers? Editor].

For component developers this technique is also
very interesting because you can hook an event
property of the TForm into which the component is
inserted. For example, each time the form receives an
OnHide event, your component receives it also. I have
already tested it by hooking the FormCreate method to
a component.

Contributed by Stefan Boether, whose email address
is 100023.275@compuserve.com

62 The Delphi Magazine Issue 7

	The TLabel Enabled Property
	Event Chains in Delphi

